Lowering and raising operators for some special orthogonal polynomials
نویسندگان
چکیده
This paper discusses operators lowering or raising the degree but preserving the parameters of special orthogonal polynomials. Results for onevariable classical (q-)orthogonal polynomials are surveyed. For Jacobi polynomials associated with root system BC2 a new pair of lowering and raising operators is obtained.
منابع مشابه
Raising and lowering operators and their factorization for generalized orthogonal polynomials of hypergeometric type on homogeneous and non-homogeneous lattice
We complete the construction of raising and lowering operators, given in a previous work, for the orthogonal polynomials of hypergeometric type on nonhomogeneous lattice, and extend these operators to the generalized orthogonal polynomials, namely, those difference of orthogonal polynomials that satisfy a similar difference equation of hypergeometric type. PACS Numbers: 0210N, 0220S, 0230V, 027...
متن کاملOn some properties of q-Hahn multiple orthogonal polynomials
This contribution deals with multiple orthogonal polynomials of type II with respect to q-discrete measures (q-Hahn measures). In addition, we show that this family of multiple orthogonal polynomials has a lowering operator, and raising operators as well as a Rodrigues type formula. The combination of lowering and raising operators leads to a third order q-difference equation when two orthogona...
متن کاملCreation and Annihilation Operators for Orthogonal Polynomials of Continuous and Discrete Variables
We develop general expressions for the raising and lowering operators that belong to the orthogonal polynomials of hypergeometric type with discrete and continuous variable. We construct the creation and annihilation operators that correspond to the normalized polynomials and study their algebraic properties in the case of the Kravchuk/Hermite Meixner/Laguerre polynomials. 1. Introduction. In a...
متن کاملRaising and lowering operators, factorization and differential/difference operators of hypergeometric type
Starting from Rodrigues formula we present a general construction of raising and lowering operators for orthogonal polynomials of continuous and discrete variable on uniform lattice. In order to have these operators mutually adjoint we introduce orthonormal functions with respect to the scalar product of unit weight. Using the Infeld-Hull factorization method, we generate from the raising and l...
متن کاملSolving singular integral equations by using orthogonal polynomials
In this paper, a special technique is studied by using the orthogonal Chebyshev polynomials to get approximate solutions for singular and hyper-singular integral equations of the first kind. A singular integral equation is converted to a system of algebraic equations based on using special properties of Chebyshev series. The error bounds are also stated for the regular part of approximate solut...
متن کامل